Frequency-dependent selection and the evolution of assortative mating.
نویسندگان
چکیده
A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we analyze the conditions under which selection favors the evolution of assortative mating, thereby reducing gene flow between sympatric groups, using a general model of selection, which allows fitness to be frequency dependent. Our analytical results are based on a two-locus diploid model, with one locus altering the trait under selection and the other locus controlling the strength of assortment (a "one-allele" model). Examining both equilibrium and nonequilibrium scenarios, we demonstrate that whenever heterozygotes are less fit, on average, than homozygotes at the trait locus, indirect selection for assortative mating is generated. While costs of assortative mating hinder the evolution of reproductive isolation, they do not prevent it unless they are sufficiently great. Assortative mating that arises because individuals mate within groups (formed in time or space) is most conducive to the evolution of complete assortative mating from random mating. Assortative mating based on female preferences is more restrictive, because the resulting sexual selection can lead to loss of the trait polymorphism and cause the relative fitness of heterozygotes to rise above homozygotes, eliminating the force favoring assortment. When assortative mating is already prevalent, however, sexual selection can itself cause low heterozygous fitness, promoting the evolution of complete reproductive isolation (akin to "reinforcement") regardless of the form of natural selection.
منابع مشابه
Sexual dimorphism and adaptive speciation: two sides of the same ecological coin.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific comp...
متن کاملA quantitative genetic competition model for sympatric speciation
I use multilocus genetics to describe assortative mating in a competition model. The intensity of competition between individuals is influenced by a quantitative character whose value is determined additively by alleles from many loci. With assortative mating based on this character, frequencyand density-dependent competition can subdivide a population with an initially unimodal character distr...
متن کاملEvolution of Assortative Mating in a Population Expressing Dominance
In this article, we study the influence of dominance on the evolution of assortative mating. We perform a population-genetic analysis of a two-locus two-allele model. We consider a quantitative trait that is under a mixture of frequency-independent stabilizing selection and density- and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The trait is ...
متن کاملAssortative mating and spatial structure in hybrid zones.
The spatial genetic composition of hybrid zones exhibits a range of possible patterns, with many characterized by patchy distributions. While several hypothetical explanations exist for the maintenance of these "mosaic" hybrid zones, they remain virtually unexplored theoretically. Using computer simulations we investigate the roles of dispersal and assortative mating in the formation and persis...
متن کاملLong-term Buildup of Reproductive Isolation Promoted by Disruptive Selection: How Far Does it Go?
We analyze the long-term evolution of a continuous trait subject to frequency-dependent disruptive selection, and controlled by a single diploid, additive locus. Our simple selection model is a mathematical approximation to many complex systems of ecological interactions resulting in disruptive selection, like, for example, scramble competition and habitat heterogeneity. A polymorphism of two s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 179 4 شماره
صفحات -
تاریخ انتشار 2008